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Transverse interlayer order in lyotropic smectic liquid crystals
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We present a theoretical and numerical study of the coupling of orientational and positional order in a
smectic-A phase of hard rods. Our density functional analysis suggests a strong spatial modulation of the
orientation distribution function. Computer simulations confirm this prediction and show that the modulation is
due to the presence of a finite concentration of particles positioned between smectic layers and oriented
perpendicular to the director. This peculiar modulation of the orientational order should be experimentally

observable in lyotropic smectic liquid crystals.

PACS number(s): 61.30.Cz, 64.70.Md, 61.20.Ja

Onsager showed that excluded volume effects alone can
lead to the formation of a liquid-crystalline phase. In his
1949 paper [1], he showed that a system of infinitely long
hard rods exhibits a transition from an isotropic liquid () to
a nematic liquid crystal (N). Subsequently, computer simu-
lation studies have shown that rods of finite length also have
an /-N transition. Moreover, simulations have revealed that
hard-core models can exhibit the more ordered smectic-A
(Sm-A) phase [2] and even, for oblate potentials, the colum-
nar phase [3]. The richness of the phase diagram of hard rods
inspired several authors to construct theories to explain this
phase behavior. Such theories were developed, first for
aligned rods [4-7] and later also for freely rotating rods
[8,9]. In Refs. [4-9], the phase behavior of hard rods is
discussed in the framework of density functional theory
(DFT), in which the Helmholtz free energy .# of the system
is expressed as a functional of the one-particle distribution

function p(;,é)) [10]. Here r and & denote the position of
the center of mass and the orientation of a rod, respectively.
As the stable phase is the one with the lowest free energy, the
aim of the DFT is to find a form for the one-particle distri-

bution p(;,é)) such that .%# is minimized while maintaining

the normalization [drd@p(r,®)=N=nV, where V is the
volume of the system, N the total number of rods, and n the
number density. Although the DFT’s for freely rotating rods
are based on fairly crude approximations, they reproduce
computer simulation results for the 7, N, and Sm-A phase of
rods rather well. However, an important approximation made
in both Ref. [8] and Ref. [9] is the assumption that orienta-
tional and positional order are decoupled. This implies that

% is minimized over the class of functions p(;,d))

=n (//((?))CI)(;). In other words, the orientation distribution
function (ODF) ¢(®) is assumed to be position independent.
This assumption is already suspect on purely physical
grounds, since differences in local density should lead to
differences in orientational order. Intuitively one would ex-
pect that the orientational order is less pronounced at low
local density, i.e., in between the smectic layers. The impor-
tance of the coupling of orientational and positional order in
the Sm-A phase is also manifest in molecular mean-field
theories and in phenomenological Landau—de Gennes type
theories, especially when the orientational order is not satu-
rated at the N—~Sm-A transition [11-13]. This is precisely the
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case in systems of sufficiently short freely rotating rods,
where the I-N coexistence region is close to the N—-Sm-A
transition. In this report we analyze the role of translation-
orientation coupling in the context of a simple DFT for hard
rods which is able to describe I, N, and Sm-A phases. We
find that the coupling of orientational and positional order is
very strong and results in an interesting feature of the Sm-A
phase. We also present computer simulations on a system of
hard spherocylinders that support the theoretical analysis.

The simplest approximation for the free energy of a sys-
tem of monodisperse hard rods is the virial expansion, trun-
cated after the first non-ideal-gas term. In this so-called On-
sager approximation .# reads

B-?[p(;,d))]=fd;dé)p(;,d))[lnp(?,d))gf—1]
1 e d - -
T2 f drdodr'dé’ fy(r,é;r',a")

Xp(r,@)p(r',@"), (1

where B is the inverse temperature and 7 the de Broglie
thermal “volume.”” The shape of the rod enters the theory via

the Mayer function fy,(7,@;r ,&®'), which in the case of
hard particles equals —1 if the two particles overlap, and is
zero otherwise. Minimizing .# while maintaining the nor-
malization of p yields

BT

———=Inp(r,®)?"
sp(r,) T

—f dr'dé' fu(r,é;r',0")p(r',0")=Bu,
@

where the Lagrange multiplier o is fixed by the condition
that the total number of particles is N. Kayser and Raveché
[14] have studied this nonlinear equation in the case of the
spatially homogeneous / and N phases. Starting from the
observation that the isotropic distribution p;,,=n/4m is a
solution of (2), they linearized (2) about p;,, and found so-
lutions of nematic character in the resulting eigenvalue equa-
tion. The same kind of bifurcation analysis will be used here.
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The difference is that the reference solution is now the nem-
atic distribution po(r,®)=nyy(®»), which from (2) satisfies

—nfdd)'E(d),d)')z,l/O(é)’)}

J doexp

where E(&®,®') is the orientation dependent excluded vol-
ume. The self-consistency relation (3) for the nematic refer-
ence distribution can readily be solved numerically for a
given density n [15,16]. Possible other solutions of (2) can
be found by inserting p(r,®)=po(r,@)+ep,(r,@®) with
£<€1 into (2) and solving order by order in . The linear
term in € gives

exp

Po(d)= , 3

—n [ a6'E .6 g8

pi(r, @) 1 f - pi(r,®)
ey drdd————

po(r,@) po(F, )
=fd?’da’fM(f,w;r",o')pl(?',w'), (4

where we used the normalization condition [ d;dc?)pl(;,&))
=0. It is easily verified that Eq. (4) has ‘“‘smectic” solutions
p1(r,®)=ni(@)cos(qg-r) for arbitrary g#0,
Y1(®) satisfies the eigenvalue equation

where

¢1<a>=nwo<w>fdca'fM(cI,o,w'wl(os'). (5)

Here f w denotes the Fourier transform of f,,. In the case of

the N-Sm-A bifurcation, we only need to consider c; =gqz,
where Z is the nematic director and the normal of the smectic
layers. The full N—-Sm-A bifurcation analysis consists of
finding the smallest value n=n"* [with the corresponding
ODF = 4§ according to Eq. (3)] which gives rise to a
nontrivial solution ;= of (5). The associated wave
number g=qg* is related to the smectic layer spacing
N*=2m/q* at the bifurcation.

We have performed the N—Sm-A bifurcation analysis in
the case of freely rotating spherocylinders of total length
L+D and diameter D for several values of the aspect ratio
x=L/D. Denoting the volume of a rod vy and the packing
fraction #n=nv,, we found 0.841<7*<1.256 and
1.27>\*/(L+D)>1.20, when « is decreased from 20 to
3.5. The nematic order parameter at the N—Sm-A bifurca-
tion, S*=[d®P,(®-2) i (®), varied from 0.990 to 0.656
in the same « regime. These values are in good agreement
with an asymptotic (large «) analysis by Poniewierski [17].
The N-Sm-A bifurcation enters the 7-N coexistence region
at k=3.450*0.001. The surprising feature of the theory is
related to the comparison of ¢ (®) and f(®), which are
assumed to be identical in the decoupling approximation
(apart from a multiplicative constant which can be absorbed
in £). In Fig. 1 we have depicted (&) and 7 (&) as a
function of 6, the angle between & and z, for the aspect
ratios k=3.5 and «=10. The inset shows the ratio
xT (@)= ¢ (@) i (®). For clarity we changed the normal-
izations such that ¢ (2) = ¢7(2)=1. For both values of «
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FIG. 1. Rescaled ¢ and ¢ for aspect ratios «=3.5 and 10 as
a function of @ (see text). The inset shows the ratio x=yF/y¢ for
the same « values, from which the change of sign is clearly visible.
The sign change is hardly relevant for k=10, since it takes place
when ¢ is vanishingly small. This is not the case for x=3.5,
indicating a coupling of orientational and positional order.

we not only see that ¢ # ¢, but also that x; (and hence
1) changes sign at a (k-dependent) critical angle 6=6,.
Since for k=10 the relative deviation between ¢ and 7 is
only appreciable when ¢ is vanishingly small, we conclude
that the decoupling approximation is rather accurate in this
case. This, however, is not true for k=3.5, where the sign
change of ¢ takes place when ¢ is still non-negligible.
This sign change, then, presages a strong coupling of orien-
tational and positional order. This can be understood, if one
realizes that the one-particle distribution function in the vi-
cinity of the N—Sm-A bifurcation reads

pSm.A(r‘,o>=n*¢5‘<«:»>[1+sxf(a)>cos(q*z>+0<ez)].( |
6

Hence the sign change of x| at 6= 6, gives rise to a density
modulation of rods oriented within the cone 0<#<é,,
which is in antiphase with that of rods oriented out of this
cone. This result implies not only the expected reduction of
average orientational order between the layers compared to
that in the layers, but it also suggests a specific mechanism
for this reduction, namely an enhancement of the fraction of
particles with an orientation transverse to the director, rather
than, e.g., a broadening of the original single peaked nematic
distribution. Given the typical geometry of the smectic phase
with a layer spacing N/(L + D)= a=~1.25, it is plausible that
particles in between the layers are either oriented along the
director, bridging two layers, or oriented in a narrow cone of
opening angle y~arcsin(a—1)~14° transverse to the direc-
tor, leading to the surprising conclusion that the ODF in be-
tween the layers could in fact be bimodal. This unexpected
mechanism, so strongly hinted at by the above analysis, is in
fact confirmed by the computer simulation results presented
below.

In order to be able to observe the modulation in antiphase
of the transversely oriented particles, it is crucial that
5 (6,) is not vanishingly small. Experiments, or computer
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FIG. 2. Histograms of the local orientation distribution function,
giving the local fraction of particles oriented in four intervals cov-
ering 0<<0<<90°. (a) represents the ODF in the smectic layers and
(b) between the smectic layers. Note that equidistant cosé intervals
correspond to @ intervals with equal solid angle area.

simulations, should therefore be carried out for short rods,
where the N—Sm-A transition is close to the /-N coexistence
region. The unphysically high packing fractions, predicted
by the Onsager functional applied to short rods, are not of
great concern at this stage, since we are mainly interested in
the generic coupling of orientational and positional order.
Physical packing fractions can be obtained using, e.g., the
Parsons-Lee density functional [18,19], which includes this
coupling at the same level as the Onsager functional.

In order to test our theoretical predictions, we carried out
a computer simulation study of a system of hard spherocyl-
inders with k=3.8 at 7=0.527. At this value of k we expect
the N—Sm-A transition at 0.50< 7<<0.52, [2] which is just
above the /-N coexistence at 0.47<7<0.49. We prepared
the smectic phase by aligning 540 spherocyclinders in 5 lay-
ers. The system was equilibrated using variable box-shape
Monte Carlo simulation, in which the volume of the simula-
tion box was fixed but its shape could vary in order to relax
possible anisotropies in the stress tensor. Data were collected
in a long molecular dynamics (MD) simulation of 2% 10*
collisions per particle.

We have measured the density-density correlation
function g(z)=(p(z)p(0)) and the local nematic order
parameter S(z), where p(z)=fdxdydti)p(;,6)) and
S(z)=(P,(cosb))(z). The angular brackets denote the aver-
age over the MD trajectory, z denotes the spatial direction
perpendicular to the smectic layers, and 6 the angle between
the particle orientation and the director. The z-dependent cor-
relation functions were determined for z intervals of thick-
ness 0.25D. From the modulations of g(z) with periodicity
A =1.34L we deduced that the number density between the
layers is about a factor of 10 smaller than in the middle of
the layers. We found similar modulations in S(z), which
varied smoothly from the value 0.894 in the middle of the
smectic layers to the surprisingly low value of 0.052 in be-
tween the layers, confirming the predicted coupling of orien-
tational and positional order. Histograms revealing the struc-
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FIG. 3. Typical equilibrated configuration of the Sm-A phase of
spherocylinders with «=3.8 at »=0.527. We highlighted the trans-
verse interlayer particles. The apparent alignment of these particles
is accidental; statistically there is no preferred in-plane direction.
From the ODF in Fig. 2(b) one would expect to see more ‘““parallel”
than ““transverse” particles in between the layers in a single snap-
shot. The low density of particles in between the layers, however,
prevented us from finding a single snapshot conveniently visualiz-
ing both possible orientations at the same time.

ture of the associated local ODF’s are depicted in Fig. 2,
where we have divided the interval 0<<cosé<1 into four
equidistant parts. Figure 2(a) represents the ODF in the
middle of the smectic layers, which shows a single peaked
(nematic) structure about #=0. Clearly, the particles posi-
tioned in the middle of the layers are all oriented in the cone
0<@<arccos(0.75)~41°. Figure 2(b) represents the ODF
in between the smectic layers. Indeed we see a strongly bi-
modal distribution with a second peak in the interval
arccos(0.25)~76°< 6<<90°, confirming the presence of
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‘“transverse” particles in between the layers. This is visual-
ized in Fig. 3, where a typical snapshot of a Sm-A configu-
ration of spherocylinders with k=3.8 at #=0.527 is shown.
Clearly, most of the particles point in the same direction and
are positioned in layers. A finite fraction, however, points in
a perpendicular direction and is positioned in between the
layers, whereas virtually no particle has an orientation in
between these two extremes. It should be stressed that this
snapshot is obtained after equilibration of an initially per-
fectly aligned smectic configuration.

In summary, we have presented theoretical and numerical
evidence for transverse interlayer order in the Sm-A phase of
short hard rods. The theoretical prediction, based on the
simple Onsager free energy density functional, shows that
the density of particles oriented within a cone 0<6< 6,
tends to be modulated in antiphase with that of particles
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oriented out of the cone. It shows that a coupling of orienta-
tional and positional order is required in the theoretical de-
scription of short rods [20]. The numerical simulations reveal
a non-negligible equilibrium concentration of particles posi-
tioned in between the layers and oriented perpendicular to
the layers, giving rise to a bimodal local orientation distribu-
tion function in between the layers. We speculate that this
surprising phenomenon should be observable experimentally,
for instance by analysis of electron micrographs of the
freeze-fractured Sm-A phase of rodlike viruses [23].
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FIG. 3. Typical equilibrated configuration of the Sm-A phase of
spherocylinders with k= 3.8 at 7= 0.527. We highlighted the trans-
verse interlayer particles. The apparent alignment of these particles
is accidental; statistically there is no preferred in-plane direction.
From the ODF in Fig. 2(b) one would expect to see more ““parallel”
than “transverse” particles in between the layers in a single snap-
shot. The low density of particles in between the layers, however,
prevented us from finding a single snapshot conveniently visualiz-
ing both possible orientations at the same time.



